4.7/5 - (51 votes)

Decimal number:

105

Hexadecimal to Decimal Conversion

(69)_{16} = (105)_{10}

Please enter all the details correctly.

Converting hexadecimal numbers to decimal involves multiplying each digit of the hex number by its corresponding power of 16 and then summing the products.

The steps involved are simple and can be easily executed with the help of the following guide.

**Conversion Steps**

For a hex number with n digits:

dn-1 … d3 d2 d1 d0

The decimal equivalent of the hex number can be obtained by the following formula:

decimal = dn-1×16n-1 + … + d3×163 + d2×162 + d1×161+d0×160

To convert a hex number to decimal, follow these steps:

- Write down the hex number.
- Assign each hex digit its corresponding power of 16.
- Multiply each hex digit by its corresponding power of 16.
- Sum the products to obtain the decimal equivalent of the hex number.

Examples

Let’s take a look at some examples to better understand the conversion process.

Example 1: Convert 3B16 to decimal

3B16 = 3×161+11×160 = 48+11 = 5910

Example 2: Convert E7A916 to decimal

E7A916 = 14×163+7×162+10×161+9×160 = 57344+1792+160+9 = 5930510

Example 3: Convert 0.816 to decimal

0.816 = 0×160+8×16-1 = 0+0.5 = 0.510

Hexadecimal to Decimal Conversion Table

Use the following table to help you with your hexadecimal to decimal conversions:

Hex (base 16) | Decimal (base 10) | Calculation |
---|---|---|

0 | 0 | – |

1 | 1 | – |

2 | 2 | – |

3 | 3 | – |

4 | 4 | – |

5 | 5 | – |

6 | 6 | – |

7 | 7 | – |

8 | 8 | – |

9 | 9 | – |

A | 10 | – |

B | 11 | – |

C | 12 | – |

D | 13 | – |

E | 14 | – |

F | 15 | – |

10 | 16 | 1×161+0×160 = 16 |

20 | 32 | 2×161+0×160 = 32 |

30 | 48 | 3×161+0×160 = 48 |

40 | 64 | 4×161+0×160 = 64 |

50 | 80 | 5×161+0×160 = 80 |

60 | 96 | 6×161+0×160 = 96 |

70 | 112 | 7×161+0×160 = 112 |

80 | 128 | 8×161+0×160 = 128 |

90 | 144 | 9×161+0×160 = 144 |